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a b s t r a c t

Estimating forage intake by free-grazing livestock is difficult and expensive. Previous approaches include
behavioral observation, ratio techniques using indigestible markers, mechanical recording of ingestive
jaw motion, and acoustic recording of ingestive behaviors. Acoustic recording shows great potential but
has been limited by the difficulty and time required to manually identify and classify ingestive events. We
developed an acoustic recording and analysis system that automatically detects, classifies, and quantifies
ingestive events in free-grazing beef cattle. The system utilizes a wide-frequency acoustic microphone
close to the animal’s mouth, mathematical signal analysis to detect and measure ingestive events, and
streaming data analysis that can handle an unlimited amount of data. Analysis parameters can be recon-
figured for different animals, forages and other changing conditions. The system measures the acoustic
parameters of ingestive events, such as duration, amplitude, spectrum and energy, which can support
further event classification and become the inputs to a forage intake model. We validated our detection
and classification technique against the results of trained human observers based on field studies with
grazing heifers. The software detected 95% of manually identified bites in an event-by-event compari-
son. Field observations and sound attenuation analysis indicate that sounds from adjacent livestock and
ambient pastoral environments have an insignificant effect upon the integrity of the recorded acoustic
data set. Wideband acoustic analysis allows us to identify ingestive events accurately and automatically
over extended periods of time.

© 2011 Published by Elsevier B.V.

1. Introduction21

Sound metrics, including frequency and amplitude, can be used22

to classify and quantify food and ingestive processes. Acoustic anal-23

ysis was used to quantify texture (crispness/crunchiness) in food.24

Liu and Tan (1999) studied snack food crispness and demonstrated25

that sound features corresponded (R2 = 0.89) with a trained sensory26

panel, concluding that sound signal analysis provided an effec-27

tive measure of crispness. Similar data were collected measuring28

apple and potato crispness (Zdunek and Bednarczyk, 2006). Acous-29

tic envelope detectors were developed (e.g. Stable Micro Systems,30

Surrey, UK) to quantify the crispness and sensory qualities of bis-31

cuits and other fresh and processed foods.32

Forage intake by grazing livestock is one of the keys to33

understanding forage grazing system dynamics (Ungar, 1996).34

However, estimating intake of free-ranging livestock is difficult and35

expensive. Technology and improved methods have significantly36

improved our ability to collect grazing behavior data. Procedures37
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to estimate intake include indirect methods such as ratio or index 38

techniques, where intake is calculated via measures of digestibility 39

(Cordova et al., 1978), and direct methods such as direct behav- 40

ioral observation; mechanical recording of chews, bites, and jaw 41

activity using jaw sensors (Chambers et al., 1981; Champion et al., 42

1998); acoustic recordings in combination with video recordings 43

or direct observation (Griffiths et al., 2006; Laca et al., 1992). The 44

development of jaw sensors and small data recorders (Rutter et 45

al., 1997) provided a wealth of data regarding ingestive behavior, 46

particularly because software to classify the data was developed 47

to quantify jaw movement events (Rutter, 1998). However, esti- 48

mates of intake require calibration of the relationships between bite 49

count and forage ingested and modeling variation in bite size. Some 50

success was achieved by combining video and acoustic recordings 51

of ingestive behavior combined with short-term studies of mass 52

difference from 0.14 m2 field-grown, sods placed in metal trays 53

(Laca and WallisDeVries, 2000). Acoustic methods pioneered by 54

Laca et al. (1992, 1994), and used by Galli et al. (2006) and Ungar 55

and Rutter (2006) utilized “an inward-facing microphone mounted 56

on the forehead of the animal” to record the sounds of bites and 57

chews. Ungar and Rutter (2006) demonstrated that data collected 58

using an inward-facing microphone corresponded to data collected 59

using the IGER Behaviour Recorder in 10-min grazing sessions using 60
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Fig. 1. Photograph of a heifer wearing a halter with attached digital recorder and microphone. Inset shows details of recorder in the protective plastic case.

six cattle. Although acoustic methods demonstrate great promise61

for recording and quantifying ingestive events, manual classifica-62

tion of these events is difficult and time consuming and in need of63

automation (Ungar and Rutter, 2006). Milone et al. (2009) created64

software that used hidden Markov models to automate the identifi-65

cation and classification of ingestive events in sheep and classified66

bites and chews with an accuracy of 58 and 89%, respectively.67

In this paper, we describe the development of a digital audio68

recording and automated event classification system that records69

grazing sounds, detects bite events and compiles grazing event data70

(bite number and acoustic event parameters). The objectives of this71

report are to: (1) describe the hardware and software components72

and processing steps; (2) compare the spectral characteristics of73

ingestive events recorded over wide and narrow frequency ranges,74

to demonstrate the need for wide-frequency acoustic data for accu-75

rate automated detection of bite events; (3) establish the acoustic76

features required to differentiate and classify ingestive events; (4)77

document the amount of acoustic cross contamination from ani-78

mals grazing nearby; and (5) use manual analysis of audio–video79

recordings to validate the ability of the automated system to detect80

and classify bite events.81

2. Methods and materials82

2.1. Field conditions83

Ingestive behavior was investigated at West Virginia Univer-84

sity Willow Bend Farm near Union, WV, USA (37.547◦N latitude,85

80.528◦W longitude). Halter-trained, 16–18 month old, angus-86

cross steers or heifers (450–550 kg live weight) were used during87

the experiments. The free-ranging animals were maintained on88

mixed, perennial pasture consisting primarily of tall fescue (Fes-89

tuca arundinacea Schreb.), orchardgrass (Dactylis glomerata L.),90

bluegrass (Poa pratensis L.) and white clover (Trifolium repens L.).91

Recording sessions were conducted between the hours of 8:00 AM92

and 1:00 PM local time between July and October over five years.93

During a recording session, the animals were given access to either94

mixed perennial pasture, alfalfa–orchardgrass pasture or a pure95

stand of triticale (X Triticosecale Wittmack) (a mixture of Trical 270096

and Trical 336; Resource Seeds Inc. P.O. Box 1319, Gilroy, CA 95021)97

that had been established in early August.98

2.2. Hardware components and setup 99

The recording system (Fig. 1) was designed to have minimal 100

intrusion on the behavior of the livestock. The system consisted of a 101

digital recorder (Edirol R-09 24-bit recorder, Program Version 1.20, 102

Roland Corporation US, 5100 S. Eastern Ave., Los Angeles, CA 90040- 103

2938) and omni-directional lavalier microphone (Sennheiser ME 104

2-US, Sennheiser Electronic GmbH & Co. KG, 30900 Wedemark, 105

Germany) mounted on a 1-inch nylon cow halter (Weaver Leather, 106

7540 CR 201, PO Box 68, Mt. Hope, OH 44660). The recorder was 107

placed inside a water resistant plastic enclosure (Pelican 1020 108

Micro Case, Pelican Products, Inc., 23215 Early Avenue, Torrance, CA 109

90505) and bolted onto the back strap of the halter to ride behind 110

the head of the animal. The microphone was attached to the front 111

strap of the halter 5 cm from the right corner of the animal’s mouth. 112

Four-inch wide Vetrap tape (3 M Animal Care Products, St. Paul, MN 113

55144-1000) was used to secure the microphone and microphone 114

cable to the halter. 115

Sound data was recorded onto a 4 GB SD memory card (Sandisk 116

Extreme III SDHC Card Sandisk Corporation, 601 McCarthy Blvd., 117

Milpitas, CA 95035) in the Edirol R-09. All recordings were made 118

at 44.1 kHz sampling rate and 16-bit resolution, providing a nom- 119

inal 22 kHz recording bandwidth and 96 dB dynamic range, and 120

stored in the WAV (Waveform Audio) file format. Recorded sound 121

files contain the voltage output from the microphone, representing 122

the time-varying acoustic pressure at the microphone diaphragm. 123

Voltage values can be converted to numerical sound pressure by 124

applying a calibration factor incorporating microphone transducer 125

gain (V Pa−1) and amplifier gain. Prior to each recording session, 126

the recorder input level, sampling rate and bit resolution were set; 127

the recorder was secured inside the plastic enclosure; and the hal- 128

ter was secured on the animal. Four to six animals grazed together 129

during each recording session in paddocks that were approximately 130

0.1 ha in size. 131

2.3. Sound file processing and analysis 132

Files from each recording session were uploaded onto a 133

Dell Optiplex 745 personal computer (Dell Inc., One Dell 134

Way, Round Rock, TX 78682, USA) (3.40 GHz Intel Pentium D 135

CPU; 4 GB RAM; Microsoft Windows XP Professional, version 136

dx.doi.org/10.1016/j.compag.2011.01.009
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Fig. 2. Schematic of testing and validation procedure for automated processing of audio recordings. The waveform represents acoustic pressure over 10 s, recorded from
steer 751 while grazing mixed pasture on July 28, 2005. Rectangular boxes on the waveform mark bite events detected by the SIGNAL program. Measured event parameters
are shown in the box below the waveform, as an example of program output.

5.1.2600). Audacity software for Windows (version 1.3.5 beta,137

http://audacity.sourceforge.net/) was used to prepare the raw WAV138

files for analysis. The stereo files created by the R-09 recorder were139

reduced to monaural files by extracting one channel. A high-pass140

filter (rolloff = 24 dB, filter quality = 0.1, cutoff frequency = 600 Hz)141

was applied to reduce wind sounds and other low frequency noise.142

In future work, we will attempt to eliminate or reduce the need for143

this filter by improving microphone wind-resistance.144

Identification, enumeration and measurement of bite events145

in the pre-processed files were performed using the SIGNAL146

sound analysis program for Windows (version 5.00.28, Engi-147

neering Design, 262 Grizzly Peak Blvd, Berkeley, CA 94708,148

USA, www.engdes.com). SIGNAL analyzed each sound file and149

automatically detected and measured bite events, recording the150

measurement data into a log file.151

The SIGNAL software processed the monaural WAV files at152

approximately 10 times real–time, i.e., analyzing 10 min of acous-153

tic data per minute. The software operates in a two-step process154

(Fig. 2). First an event is detected, then event parameters are155

measured and recorded in a log file. This process is performed156

repeatedly, from the beginning of the file to the end with the goal157

of detecting every target event in the file. SIGNAL detects events158

based on sound characteristics such as frequency, intensity, dura-159

tion and time between events (Table 1). The values we chose for 160

these parameters collectively define a bite event to the software 161

and enable it to detect bite events. Initial detection values were 162

selected based on the differing amplitude and frequency character- 163

istics of bite vs. non-bite events. Detection values were then refined 164

through trial and error by comparing automated and manual bite 165

counts. 166

Table 1
Parameter settings used to detect bites from acoustic recordings of grazing sessions
with SIGNAL software.

Parameter Value

Low frequency cutoff 17 kHz
High frequency cutoff None
Envelope decay time 15 ms
Detection threshold 0.013 V
Minimum event gap 250 ms
Minimum pulse length 1 ms
Minimum event length 100 ms
Maximum event length 1000 ms
Pre-event time extension 100 ms
Post-event time extension 100 ms

dx.doi.org/10.1016/j.compag.2011.01.009
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Fig. 3. Spectral density plots of: (a) wideband (0–20 kHz) recordings and (b) nar-
rowband (0–8 kHz) recordings of one bite and one chew event of a heifer grazing
vegetative triticale. Spectral energy below 600 Hz was removed from all signals by
a high-pass filter during preprocessing. Spectra were derived from a 16,384-point
Fourier transform, adjusted for 1 Hz spectral bandwidth and smoothed with a 1000-
Hz rectangular window. Co-plotted spectra are normalized for equal RMS power to
contrast spectral distribution. Brackets indicate the 17–22 kHz frequency band used
to detect bite events.

Key distinguishing characteristics of bite events, relative to167

chewing or other sounds, are the high frequencies produced by the168

initial shearing or ripping of forage. Therefore we programmed the169

detection software to evaluate only energy at frequencies between170

17 kHz and the upper recording limit of 22 kHz (see Table 1), as171

shown in Fig. 3. For purposes of bite detection, we programmed the172

software to register an event start time (Ts) when event amplitude173

in the 17–22 kHz range exceeded a given detection threshold and an174

event end time (Te) when amplitude subsequently dropped below175

this threshold. Events were discarded as spurious if, for example,176

their durations were shorter than the minimum designated event177

length or longer than the maximum designated event length.178

Detailed examination of time-domain representations of bites179

indicates a low level of bite energy immediately prior to Ts as sound180

energy increases from background levels to the detection threshold181

and immediately after Te as bite energy dissipates and drops below182

the threshold. We programmed SIGNAL to include this energy by183

using an event measurement period of Ts − 100 ms to Te + 100 ms184

as indicated by the pre-event and post-event time extensions in185

Table 1. We expect our technique will detect and extract the186

bite portion of “chew–bite” events (Laca and WallisDeVries, 2000)187

consisting of a chew followed immediately by a bite. We expect188

contamination due to spurious inclusion of the chew segment will189

be small because: (1) the 600 Hz high pass filter utilized prior190

to event detection removes much of the chew energy and (2)191

the 100 ms time extension matches the small separation depicted192

between the chew and bite segments of the chew–bite event illus-193

trated in Laca and WallisDeVries (2000).194

Our approach to bite detection is not intended to measure bite195

duration precisely but rather to detect automatically the occur-196

rence of bite events with high reliability, count bite events and197

measure the sound energy produced when forage is sheared in each198

bite. For example, our approach to bite detection does not include199

the time taken by the animal to gather forage with the tongue and 200

bring it into the mouth prior to shearing, a process that will vary 201

with sward structure and composition. 202

This phase of our work did not require calculating the abso- 203

lute energy of acoustic events. However, we did compare relative 204

acoustic energy levels, for example, to estimate the percentage con- 205

tamination of bite sounds by adjacent animals (Section 2.5.1). For 206

this purpose, we calculated the total energy flux of an event, defined 207

as
∫

J m−2 s−1 dt. Since instantaneous energy flux in a plane acoustic 208

wave is p2/�0c, where p is pressure and �0 and c are, respec- 209

tively, the density and propagation velocity of the medium, total 210

energy flux depends on
∫

p2 dt. Since the amplitude of our acoustic 211

data is proportional to pressure, our program calculated the time- 212

integrated squared amplitude for each bite as a measure of relative 213

event energy. 214

2.4. Comparison of wideband and narrowband recordings of 215

ingestive sounds 216

Our technique for automating detection and classification of bite 217

events distinguishes bites from chews based on high-frequency 218

(17 kHz and above) characteristics and therefore requires full band- 219

width acoustic recordings. To confirm this, we made “wideband” 220

(0–22 kHz) and “narrowband” (0–8 kHz) recordings of the same 221

ingestive events. We use these terms to refer to these band- 222

widths throughout this paper. Wideband recordings were made 223

with a halter-mounted ME 2 acoustic microphone attached near 224

the animal’s mouth and narrowband recordings were made with 225

a forehead-mounted piezoelectric microphone fashioned from a 226

2.5 cm diameter piezoelectric transducer (Edmunds Scientifics, 227

Tonawanda, NY 14150, USA). Signals were recorded simultaneously 228

on separate channels using the stereo capability of the Edirol R-09. 229

This system was mounted on one heifer grazing triticale on 230

October 20, 2009 and on another heifer grazing triticale on Octo- 231

ber 22, 2009. Five bite events and five chew events were randomly 232

selected from wideband data and similarly from narrowband 233

data for a total of 20 exemplars, to avoid crowding on the PCA 234

plot. Two temporally synchronized monaural files, one wideband 235

and one narrowband, were created from the stereo file for each 236

event using Audacity software. The frequency spectra of the 40 237

files (2 animals × 10 events animal−1 × 2 files event−1) were ana- 238

lyzed by SIGNAL using Fourier transform techniques. For each file, 239

relative spectral amplitude in dB was determined at 86.1 Hz inter- 240

vals across the spectral range from 0 to 22000 Hz. These 256 values 241

for each of the 40 events were then subjected to principal compo- 242

nent analysis using the PRINCOMP procedure of SAS for Windows, 243

version 9.2 (SAS Institute, Cary, North Carolina 27513, USA). 244

2.5. Estimating acoustic contamination of recordings 245

Our recordings of acoustic bite events can be contaminated in 246

two ways: by bite sounds from other animals and by non-target 247

noise events such as insects or jet plane flyovers. 248

2.5.1. Cross-contamination from other bite sounds 249

Our studies involved multiple animals grazing together in close 250

proximity, which creates the possibility that a recorded bite from 251

one animal (the target) may include bite sounds from nearby 252

(non-target) animals. We call this bite-sound cross-contamination. 253

Significant cross-contamination can degrade the automated detec- 254

tion process with false triggers, as well as corrupt quantitative 255

measurements of detected bite events, and has been noted as 256

a serious concern (Ungar and Rutter, 2006). We quantify cross- 257

contamination as the fraction of recorded target bites that contain 258

significant energy from the bite sounds of non-target animals, 259

dx.doi.org/10.1016/j.compag.2011.01.009
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defined as a contaminating energy level of 1% or greater relative260

to the target bite sound energy, as measured at the target micro-261

phone. The 1% contamination level was selected as the threshold262

below which contamination would have minimal impact on bite263

energy measurements.264

We could not directly measure bite sound cross-contamination265

in our field recorded sound signals as a function of animal proximity266

due to the difficulty of obtaining time-correlated acoustic and prox-267

imity data without suitably tame and trained animals. Instead we268

modeled cross-contamination in the following way. We observed269

inter-animal separation distances under field conditions, measured270

the average rate of bite production in field recordings, and applied271

the physics of sound attenuation in air to calculate contaminating272

bite energy at varying distances. The equation for acoustic radia-273

tion in free space states that energy attenuates in proportion to274

the squared distance from the sound source. Assuming target and275

non-target bites have similar source energy, the sound energy of276

the non-target bite will exceed 1% of target bite energy when the277

non-target animal is less than 10 times as far from the record-278

ing microphone as the target animal’s mouth. Since the recording279

microphone is mounted 5 cm from the target’s mouth, we are con-280

cerned with animal encounters closer than 50 cm, in which the281

contaminating acoustic energy would be 1% (5 cm/50 cm)2 or more282

of the target energy.283

We observed six heifers while they grazed together within a284

46 m × 34 m paddock of vegetative triticale at 20-s intervals over285

five periods of 5–10 min each. At each interval, we counted the286

number of animals whose heads were within 1 m of each other, as287

this separation distance was easier to estimate in the field than the288

0.5 m critical distance. The number of interactions at 0.5 m or less289

is estimated by a linear interpolation between 0 and 1 m.290

2.5.2. Contamination from non-target sounds291

Non-target noise events include intermittent sounds, such as292

flies, birds, animal vocalizations, aircraft, farm equipment and road293

traffic, and continuous sounds, such as crickets and grasshoppers.294

As with cross-contamination, our goal was to estimate the contam-295

ination of measured acoustic energy in the target bite. Intermittent296

sounds – such as aircraft flyovers – are short-duration, potentially297

high-intensity, and usually infrequent. We estimated the statistics298

of this contamination in terms of the fraction of recorded bite events299

that would be affected. Continuous sounds – such as insects – are300

long duration and low intensity. For example, large populations of301

crickets in our pastures during mid to late summer create continu-302

ous background sounds that are present in every event in the data303

set. For these we estimated the ratio of target to non-target acous-304

tic energy and from this ratio we calculated the spurious increase305

in target energy as a percentage error. We analyzed two represen-306

tative 10-s sound samples, each containing a bite sequence with307

background cricket sounds and a segment of cricket sounds without308

bites. Data was high-pass filtered at 600 Hz to remove wind noise309

and other low-frequency ambient sounds. We calculated the ratio310

of bite energy (energy of bite with contaminating cricket sounds311

minus energy of cricket-only sounds) to cricket energy for each312

sample segment.313

2.6. Calibration and validation of automated bite detection314

Audio/video recordings of grazing activity were used to calibrate315

and validate bite detection parameters used by the SIGNAL software316

(Fig. 2). Digital camcorders were used to record ingestive behavior317

of three animal subjects. Two animals (steers 751 and 527) were318

recorded grazing mixed perennial pasture on July 28, 2005 and319

one animal (steer 710) was recorded grazing alfalfa on Septem-320

ber 8, 2005. Continuous 15–30 min recordings of each animal on321

each date were made with Canon Elura 85 Digital Camcorders using322

Maxell Mini DV Digital Video Cassette tapes. Audio was transmit- 323

ted from the halter-mounted acoustic microphone to a camcorder 324

using a Samson AL1 UHF transmitter mounted on the halter behind 325

the neck of the animal. Camera operators were stationed outside 326

of the paddocks where the animals grazed. When multiple animals 327

were recorded simultaneously on July 28, 2005, the transmitters 328

were set to different frequencies to isolate transmission of audio 329

from each animal to separate cameras. 330

The single audio/video recording from each animal and date was 331

divided into 1–5 min segments for analysis and converted to MOV 332

files using iMovie software (Apple Computer, Cupertino, CA 95014). 333

We created three files representing 15 min of data for steer 751, four 334

files representing 20 min of data for steer 527, and five files repre- 335

senting 15 min of data for steer 710. The number of bites recorded 336

on each MOV file was manually tallied by a trained observer while 337

reviewing the combined audio and video tracks. Manual classifi- 338

cation was based on synchronized CD-quality audio and close-up 339

video that provided visual details of the distinctive mouth and head 340

movements associated with bite events. To estimate the accuracy of 341

our counts, we repeated them using a second trained observer. The 342

audio track was extracted from each MOV file using iMovie to create 343

digital audio WAV files (44.1 Hz, 16-bit, monaural) for automated 344

bite analysis using the SIGNAL software. 345

For each animal and date, one WAV file was chosen at random as 346

a calibration file for the SIGNAL program. SIGNAL detection param- 347

eters (Table 1) were adjusted until the SIGNAL-derived bite count 348

was within 2% of the manual bite count for the calibration file. 349

Generally, calibration involved minor adjustment to the detection 350

threshold level among animals grazing the same forage type and 351

larger adjustments to the threshold between forage types. Other 352

detection parameters generally did not change. Once calibrated, 353

the SIGNAL program was then used to count the bites from the 354

remaining files for that animal and date without any further param- 355

eter adjustments. In this manner, SIGNAL-derived bite counts were 356

determined for all of the WAV files. 357

Automated detection was validated against the manual base- 358

line in two ways. First, automated and manual bite counts were 359

compared. The SAS GLM procedure was used to test for significant 360

differences between the manual and SIGNAL-derived bite counts. 361

The model was a repeated-measures ANOVA with between subjects 362

factors. Differences between the two count methods were evalu- 363

ated by assessing differences in bite count within recordings and 364

interaction was evaluated to assess any differences in count method 365

among the animals. We also calculated the standard deviation of 366

the residual error of the automated bite counts compared to the 367

manual bite counts. 368

Second, automated and manual bite sequences were compared 369

event by event. One 5-min WAV file was selected at random for this 370

detailed analysis. Using the audio and video recording, a trained 371

observer recorded the mid-bite time coordinate of every bite event 372

in the file (blind to the automated result on that file). Manual and 373

automated bites were then compared one by one. Bites were con- 374

sidered matched if the manually derived bite time fell between the 375

start and end times of an automatically detected bite. This analysis 376

produced three counts: matched bites, false positives (a non-bite 377

sound detected as a bite by the automated system) and false nega- 378

tives (a manually identified bite missed by the automated system). 379

3. Results 380

The self-contained, halter-mounted recording system was 381

lightweight and did not appear to restrict animal activity. Direct 382

observation suggested that the animals exhibited normal grazing 383

behavior while wearing the halters. The animals were typically 384

eager to graze fresh forage during the experimental trials after 385

dx.doi.org/10.1016/j.compag.2011.01.009
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Fig. 4. Wideband acoustic recordings of: (a) the bite event and (b) the chew event shown in Fig. 3a. Signals are displayed as time-domain waveforms and are normalized to
unit peak amplitude.

spending the previous night penned with a limited amount of386

forage and/or dry hay. Laboratory tests showed that the 4 GB SD387

memory cards could hold up to 6 h and 24 m of sound recordings,388

longer than any of the trials conducted thus far. A pair of fully389

recharged batteries powered the recorders long enough to fill the390

SD cards in laboratory tests.391

Sound signal data can be expressed as sound intensity vs. time392

(Fig. 4) or as sound intensity vs. frequency for a given time period393

(Fig. 3). Both representations provide insight into the recorded394

sounds. A typical bite generated sound for a duration of approxi-395

mately 0.1 s (Fig. 4a) and the sound spanned a wide frequency range396

(Fig. 3a). Frequencies below 600 Hz are excluded by the high-pass397

filter applied during pre-processing. Amplitude declines between398

8 kHz and 22 kHz, the upper limit of our recording system (Fig. 3a),399

but that range is important for detecting and classifying bite400

signals.401

3.1. Importance of wideband acoustic recordings402

We performed a principal component analysis (PCA) on the403

spectra of wideband and narrowband recordings of the same bite404

and chew events from the two animals under study (Fig. 5). The405

first two principal components accounted for 96% of the variation406

in the spectral signatures. In Fig. 5a, bites and chews are effectively407

separated on wideband (0–20 kHz) but not narrowband (0–8 kHz)408

data. In Fig. 5b, spectral characteristics are uniform across animals409

in wideband data but vary significantly between animals in the410

narrowband data. These characteristics make wideband acoustic411

recordings necessary for our approach to the automated detection412

and classification of bite events.413

3.2. Acoustic contamination of recordings414

3.2.1. Cross-contamination from other bite sounds415

A total of 126 field observations were made of animal proximi-416

ties while grazing. 7.1% of these observations involved two or more417

animals closer than 1 m. This yields an estimated interaction rate418

of 3.5% for two or more animals closer than 0.5 m.419

3.2.2. Contamination from non-target sounds 420

A non-target noise event can intrude in two ways: (1) as a 421

spurious event mistaken for a target event by meeting the acous- 422

tic detection criteria and (2) as a contaminating event overlaying 423

a valid target event and spuriously increasing its energy level. 424

Table 2 summarizes non-target noise sources, their capacity for 425

spurious detection, and their magnitude of interference based on 426

energy level and frequency of occurrence. None of these sources 427

has sufficient energy within our detection band (17–22 kHz) to be 428

spuriously detected as a bite event. Intermittent sources (such as 429

animal vocalizations, aircraft, etc.) have a low rate of occurrence 430

and will not significantly contaminate the data set. Continuous 431

sounds such as crickets, when present, will contaminate every 432

event in the data set. We calculated bite energy to cricket energy 433

ratio and the resulting spurious increase in measured bite energy as 434

a percentage error. We obtained bite energy to cricket energy ratios 435

of 105.1 and 30.2 for our two samples. The worse of these would 436

increase bite energy by (1 + 1/30.2)/1 = 1.033, for a percentage error 437

of 3.3%. We consider this error level acceptable in our study. 438

3.3. Calibration and validation of automated bite detection 439

Automated bite detection was validated through: (1) compar- 440

ison of manual and automated bite counts on multiple data files 441

Table 2
Summary of non-target noise sources.

Noise source Detected as
spurious event

Broadband
energy relative to
bite events

Frequency of
occurrence relative
to bite events

Crickets No Low High in
summer/fall

Flies No Low Low in summer/fall
Cattle

vocalizations
No High Low

Birds No Low Low
Jet aircraft No Medium Low
Farm

equipment
No Medium Low

Road traffic No Medium Low
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Fig. 5. Results from principal component analysis of frequency spectra comparing: (a) bites and chews from wideband and narrowband recordings and (b) the same data
distinguished according to the two animals used in the analysis.

and (2) a visual event by event comparison of automated and442

manual bite events for one 5 min recording. Manual bite counts443

were validated by two independent trained observers, whose444

results correlated closely (r = 0.99; P = 0.0001; n = 12). Fig. 6 illus-445

trates the comparison of manual and SIGNAL-derived total bite446

counts for three steers over 60 min of data. Although manual and447

automated bite counts differed by small amounts, the repeated448

measures analysis of variance indicated no significant difference449

(p = 0.84) between the two techniques and no significant interac-450

tion (p = 0.53) between count technique and individual steers. The451

automated bite counts exhibited a residual error of 9.1% relative452

to the manual bite counts. In the event by event comparison, SIG-453

NAL identified 154 true bite events (true positives; TP), detected454

2 events that were not bites (false positives; FP) and missed eight455

manually identified bite events (false negatives; FN). SIGNAL deliv-456

ered a true positive detection rate or sensitivity (correctly detected457

bites/total true bites) of 0.95 (TP/(TP + FN)) and a positive predic-458

tive value (correctly detected bites/total detected bites) of 0.99459

(TP/(TP + FP)) (Suojanen, 1999).460

4. Discussion461

Our acoustic monitoring system recorded and processed acous-462

tic recordings of grazing activity in steers under free-ranging463

conditions, including identifying, classifying and quantifying inges-464

tive events. Characteristics of the system that contribute to its465

successful trials include: (1) a light-weight, sturdy, halter-mounted466

digital recorder and microphone that had no observable impact on467

grazing behavior, (2) CD-quality digital recordings (44.1 kHz, 16-468

bit) that included the full frequency range up to 22 kHz, and (3) 469

SIGNAL software that could utilize the high-frequency characteris- 470

tics of bite sounds to automatically detect and measure bite event 471

parameters from digital recordings of any length. 472

4.1. Importance of wideband acoustic recordings 473

Previous work has distinguished bites and chews based on tem- 474

poral characteristics and audible differences in sound quality (Laca 475

and WallisDeVries, 2000). Previous audio recordings of biting and 476

chewing events relied on forehead-mounted, inward-facing micro- 477

phones (Laca and WallisDeVries, 2000; Ungar and Rutter, 2006; 478

Galli et al., 2006; Milone et al., 2009) and were apparently limited 479

in frequency range. For example, Laca and WallisDeVries (2000), 480

show bovine bite and chew spectra limited to approximately 6 kHz, 481

while Milone et al. (2009) show sheep bite, chew and chew–bite 482

spectrograms limited to approximately 8 kHz. 483

Our approach to automatically detecting bite events and distin- 484

guishing them from chews is founded on the fact that although the 485

spectral profiles of bites and chews are similar below 8 kHz, they 486

differ significantly in the 10–20 kHz range. Wideband acoustic data 487

extending to 22 kHz (Fig. 4a) show bite and chew events as spec- 488

trally different and distinguishable, while narrowband data limited 489

to 8 kHz show bite and chew events with similar spectral charac- 490

teristics (Fig. 3b). Fig. 3a and b represents the same bite and chew 491

events and are normalized for root-mean-square (RMS) power 492

to emphasize differences in spectral distribution. Non-normalized 493

plots (data not shown) depict an even greater bite–chew differ- 494

ence in the 10–20 kHz range, further increasing the separability 495

of bites and chews in acoustic data. For this reason, our project is 496
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Fig. 6. Comparison of the number of bites detected by manual review of audio/visual recordings vs. automated processing of the audio portion of the same recordings. Each
of the 12 segments is 3–5 min in length.

based on full frequency range acoustic recordings. The distinction497

between wideband and narrowband data is further confirmed by498

principal component analysis (Fig. 5). These data also suggest that499

accurate automated bite–chew differentiation would be difficult500

using narrowband data and possibly inconsistent among animals.501

4.2. Acoustic contamination of recordings502

In a manual analysis of individual events, spurious and con-503

taminated events can be identified and excluded. However, in an504

automated analysis, any event meeting the mathematical selec-505

tion criteria will be included in the measured data set, whether a506

valid, spurious or contaminated event. We therefore surveyed the507

range and modalities of non-target noise sources with two ques-508

tions in mind: (1) can a non-target event be spuriously accepted509

and (2) if overlayed on a target event, what would be the quanti-510

tative impact on event energy. Our goal was to estimate the total511

impact of non-target acoustic events on measured bite energy.512

Contamination from bite sounds of adjacent animals has been513

raised as an important concern (Ungar and Rutter, 2006). Our anal-514

ysis indicates that even at a high stocking rate (40 animals per ha),515

only 3.5% of recorded bites would be contaminated at a level of516

1% or greater (resulting from animals within 0.5 m of each other).517

However, our calculations do not account for three factors that may518

further reduce contamination: (1) the reluctance of these large ani-519

mals to bring their heads within the 0.5 m critical distance of each520

other; (2) acoustic shadowing when the animals’ heads are parallel 521

but opposite in orientation. In half of these instances the recording 522

microphone, mounted on the side of the jaw, will be acoustically 523

shadowed from the sounds of the adjacent animal by the head of 524

the wearer, and (3) temporal dispersion of bite events; since bites 525

occupy less than 30% of recorded duration, energy contamination 526

will be reduced proportionally. Considering these factors, we esti- 527

mate that less than 1% of our bite events will have an energy error 528

of 1% or greater due to contamination. (Note that contaminating 529

bites that do not overlay a bite event are rejected by the threshold 530

setting of the bite event detector and do not enter the data stream.) 531

Cross-contamination levels may fluctuate with stocking density, 532

pasture geometry and herd behavior. We expect to evaluate these 533

assumptions further as grazing dynamics change across the season. 534

We analyzed contamination from non-bite noise events in two 535

cases. First, non-bite events that do not overlay a bite event will 536

not meet the spectral profile of a bite and will be rejected by the 537

bite detector. Second, when non-bite noise events do overlay bite 538

events, we estimated the resulting corruption of measured bite 539

energy. These events divide roughly into high energy events that 540

occur rarely (such as aircraft flyovers and cattle vocalizations) and 541

low energy events that occur frequently or continuously (such as 542

crickets). We calculated bite energy corruption due to a continu- 543

ous non-target source, cricket sounds and found the result was a 544

small percentage error. At the other extreme, the energy level of 545

an aircraft flyover would invalidate any simultaneous bite events, 546
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but if a flyover occurs once per hour and shadows 10 out of 1000547

recorded bites during the incident, the net corruption is again in548

the 1% range.549

4.3. Automated bite detection550

When we began the effort to automate the identification and551

classification of the sound data, we capitalized on the fact that in552

an acoustic recording of grazing, bite events had significant energy553

between 17 and 20 kHz, a region of the sound spectrum with little554

background noise in pastoral settings. This became the foundation555

of our acoustic bite event detector, which we programmed to focus556

on the 17–22 kHz range (Fig. 3). With the detection system cali-557

brated for a given animal and forage, our data show no significant558

difference between bite counts derived from manual classifica-559

tion based on video/audio recordings and automated classification560

using SIGNAL. In practice, our system will require periodic manual561

calibration. Further tests are needed to determine the frequency of562

calibration, but calibration will almost certainly be required when563

animals are moved to a new forage resource, e.g., from mixed pas-564

ture to alfalfa. After the calibration procedure is completed, SIGNAL565

can process long files rapidly and with high accuracy.566

4.4. General considerations567

One limitation of the digital recording system is data storage568

capacity for the 44.1 Hz, 16-bit recordings. 32 GB SD memory cards569

can accommodate 48 h of continuous data recording, but the power570

supply must be increased to accommodate that duration, and a571

larger power supply increases the equipment’s footprint on the572

livestock. A more promising approach is to implement the detec-573

tion, classification and measurement algorithms on an embedded574

processor and store this dramatically reduced data set instead of575

recorded acoustic waveforms.576

Development of a method to estimate grazing livestock intake577

is a goal that has been long sought after. Estimating forage intake578

is a vital step toward integrating animal performance and forage579

management in grazing systems and is important to measures580

of performance efficiency. Our recording and automated pro-581

cessing system solves major problems in estimating ingestive582

events in grazing livestock, namely, recording extended periods of583

free-grazing, automatically classifying bite and chew events and584

quantifying relative energy per bite.585
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